
Identifying Contact Patterns In
Intermittently Connected Networks

Master of Technology
in

Information Technology

By

Yogesh Piolet T
[Roll No. 08IT6018]

Under the supervision of

Dr. Arobinda Gupta
School of Information Technology

&
Department of Computer Science

 Indian Institute of Technology, Kharagpur

Nov 2009

ii

ABSTRACT

Delay Tolerant Networks (DTNs) exhibit properties that are significantly different from that of

conventional networks such as intermittent connectivity, long/variable delay, high error rates and

asymmetric data rates. Routing becomes a problem in DTNs because the conventional routing

protocols fail with these properties of DTNs. The DTNs follow the store-carry-forward strategy

for routing. The mobile nodes store and carry the message with them until the intermediate or

destination node comes into contact with it.

Several routing protocols have been proposed for DTNs. One such routing protocol is the

Probabilistic strict ROuting using Contact Sequencing. This approach takes advantage of the

contact patterns that may occur when several mobile nodes would come into contact with each

other regularly. An example for such a contact pattern is a university campus scenario where all

the students of a particular course would meet at the classroom four times per week and at the

laboratory once per week. This motivated us into finding a solution for the following problem:

Given a history of contacts between a set of nodes, determine if the contacts are repetitive or not.

If yes, determine the period of repetition.

To achieve this objective, we approach the problem in a two-step manner. We need to slice the

non-partitioned contact history into meaningful partitions such that majority of the contacts

repeat across the partitions. To do so, a metric which would determine the similarity between

contact patterns becomes necessary. In the first step, we come up with two metrics which

determine the similarity between contact patterns on a scale of 0 to 1. The robustness of the

metrics has been thoroughly examined. In the second step, an algorithm has been proposed to

solve the slicing problem. Experimentation for testing the correctness and feasibility of the

algorithm is in progress. Given a contact history, several alternative methods could exist to slice

the given contact history. However, some of these methods have a significant benefit over the

others in terms of time complexity and space, which are both critical to the DTN. Once slices

have been generated, it becomes easier to predict whether the contact history is repetitive or not.

If the contact history is indeed repetitive, the period of repetition will be reported.

iii

Table of Contents

1. Introduction .. 1

1.1 Motivation.. 2
1.2 Problem Statement ... 4
1.3 Organization .. 5

2. Related Work.. 5

3. Similarity Measures ... 7

3.1 Formal Specification of Slice Structure ... 8
3.2 Formulation of Similarity Measures .. 9

3.3 Results & Inferences ... 11

4. Slicing the pattern .. 14

4.1 Formal Specification of the Slicing Problem .. 14

4.2 Experimental Setup ... 15

5. Conclusion ... 16

6. Future Work ... 16

References ... 16

1

1. Introduction

One of the fundamental assumptions with conventional networks is that there always exists a

contemporaneous end-to-end path between source and destination. This assumption also takes into

consideration the link failures occurring due to network topology failures, mobility of nodes etc.

Even mobile ad-hoc networks (MANETs) assume that the network is mostly connected. A

characteristic feature of this assumption is that a message would be dropped if the next hop is not in

contact. Another assumption with conventional networks is that most networks have a very low

end-to-end delay. Conventional networks also assume that intermediate nodes store the message

only for processing.

But, there are networks which defy these fundamental assumptions. There exist networks where the

contemporaneous end-to-end path may never exist. In such networks, the nodes come into contact

with each other intermittently. Hence, such networks are called Intermittently Connected Networks.

In such networks, the network is mostly a collection of partitioned regional networks. Although all

the links of the end-to-end path may not be connected contemporaneously, portions of the end-to-

end path may be formed at different time intervals. Communication in such networks, though

challenging, is not impossible. Communication in such challenged networks can take place by

buffering the message until the node comes into contact and forwarding the message to the node

when it comes into contact immediately. However, such a challenged network would violate the

assumption of transient storage of messages. Such networks would require each node to hold the

message until the next node comes into contact with it. Since such networks take advantage of the

contact between nodes at unscheduled times to exchange messages, such networks are also called

opportunistic networks. Also, a penalty with such opportunistic networks is the large delay in

delivering the messages which is mainly due to the large amount of time spent in waiting for the

contact between the intermediate nodes to occur. Hence, the applications that operate on such

networks must be capable of tolerating the large/variable delays due to the disruptions in the end-to-

end path between source and destination node. Hence, such networks are popularly known as Delay

Tolerant Networks or Disruption Tolerant Networks (DTN) [1]. DTNs have higher error rates due to

2

link failures and require correction or even retransmission. Correction of a message implies more

processing time, while retransmission results in higher network traffic. DTNs also suffer from

asymmetries in bidirectional data rates. Summarizing, DTNs exhibit the following properties:

intermittent connectivity, long/variable delay, high error rates and asymmetric data rates [2].

1.1 Motivation

Routing becomes a problem in DTN because the conventional routing protocols fail with the

inherent characteristics of DTN. The DTNs follow the store-carry-forward strategy for routing.

According to this strategy, on receiving a message, a node could transmit the message immediately

if it is in contact with the next node, otherwise it will store the message. The node will carry the

message with itself until the next intermediate node comes into contact. The node will immediately

forward the message when the next intermediate node comes into contact.

Several routing protocols have been proposed for DTNs already [5,6,9,11,12]. One such preliminary

protocol is the Epidemic protocol [12]. In this approach, the message is transferred by a node to any

intermediate node that comes into contact with it, provided the intermediate node does not have the

message already. Thus, it tries to increase the data delivery probability. But this protocol creates too

many replicas of the same message in the network, resulting in increase of network congestion. To

overcome this extreme replication problem, there are some routing protocols which transmit the

message only to a selected subset of nodes from the set of all nodes that come into contact. Spray

and Wait [11] and PROPHET [9] are examples of such protocols. There exist many other routing

protocols for DTNs following variations of these approaches [5,6,12].

Probability strict ROuting using Contact Sequencing (PROCS) [6] is a routing protocol that uses

repetitive behavioral patterns in the contact history between the nodes to decide which node must be

chosen as the next intermediate node. Consider the following example:

3

Figure 1.1: A contact graph

Let A, B, C, and D be four mobile nodes. A meets B at 1 pm and it meets C at 2 pm. B meets D at

12 pm. C meets D at 3 pm. Suppose A wants to transmit a message to D at any time before 1 pm,

the obvious path to choose would be A-C-D. Even though A meets B first, it holds back the

message until C comes into contact because C would probably deliver it to D by 3 pm while B

would have done it only by 12 pm. Since the sequence in which the nodes meet is a basis for the

routing decision, this protocol is called Probabilistic strict ROuting using Contact Sequencing. This

achieves a high delivery ratio and low replication of messages. A graph depicting such information

about contacts between nodes is called contact graph (as shown in Fig. 1.1)

Another example of a protocol which uses repeating behavioral patterns in the contact history

between the nodes is Probabilistic ROuting Protocol using History of Encounters and Transitivity

(PROPHET) [9]. Each node maintains a delivery predictability to every other node. A delivery

predictability to a node i indicates the probability with which the current node would deliver the

message to node i. When two nodes meet, they exchange their predictability to update their own

delivery predictability and all the other transitive predictability to other nodes. A message will be

passed to another intermediate node only if the latter has higher delivery predictability to the

destination node. This method replicates message in a limited manner, unlike Epidemic routing.

The routing protocols such as PROCS and PROPHET take advantage of the knowledge regarding

when two nodes would meet each other. But, where do they get this information from? These

routing protocols assume the existence of knowledge oracles [6], each of which is capable of

1 12

32

A

B

C

D

4

answering the questions that are posed to it. The knowledge oracle which has the relevant

information to determine when two nodes would meet each other is called contact oracle.

One of the challenges lying ahead is to eliminate the assumption of the existence of such a

hypothetical contact oracle and, to design and implement a system which has equivalent answering

powers. Given the contact history between a set of nodes for a given period of time and if the

contacts between nodes are repetitive after a period, it should be possible for the proposed system to

predict when two specific nodes are going to meet each other. Once we have such a system in place,

we need to deduce the contact graph and other related information from the contact history and

supply it to the corresponding routing protocol.

1.2 Problem Statement

The objective of this thesis is to predict when a specific pair of nodes is going to meet in the future

based on the contact history between the nodes. This is equivalent to the problem of determining if

given a contact pattern history between nodes, whether the contact patterns between nodes are

repetitive with a certain period or not. The problem statement can be formally stated as follows:

Given a history of contacts between a set of nodes, determine if the contacts are repetitive or not. If

yes, determine the period of repetition.

To achieve this objective, we approach the problem in a two-step manner. We need to slice the non-

partitioned contact history into meaningful partitions such that majority of the contacts repeat across

the partitions. To do so, a metric which would determine the similarity between contact patterns

becomes necessary. In the first step, we come up with two metrics which determine the similarity

between contact patterns on a scale of 0 to 1. The robustness of the metrics has been thoroughly

examined.

In the second step, an algorithm has been proposed to solve the slicing problem. Experimentation

for testing the correctness and feasibility of the algorithm is in progress. Efficient slicing strategies

need to be developed. Given a contact history, several methods could exist to slice the given contact

5

history. However, some of these methods have a significant benefit over the others in terms of time

complexity and space, which are both critical to the DTN. Once slices have been generated, it

becomes easier to predict whether the contact history is repetitive or not. If the contact history is

indeed repetitive, the period of repetition will be reported.

1.3 Organization

This report is organized into the following sections. In section 2, we give literature survey of the

area. In section 3, we propose two metrics to determine the similarity between two contact patterns.

In section 4, we propose a brute force based slicing algorithm. In section 5, a few conclusions are

drawn from the work done until now. Finally, in section 6, we present the future directions of our

work.

2. Related Work

The Delay Tolerant Network (DTN) exhibits properties such as intermittent connectivity,

long/variable delay, high error rates and asymmetric data rates, which do not agree with the

fundamental assumptions of networking. Fall et. al. [2] proposed an architecture for the DTN that

allowed both DTN and other networks which followed the assumptions to operate together

successfully. The architecture was flexible enough to allow each network stack to use the protocols

that best suited its needs. But, to achieve interoperability with other networks, an overlay network

protocol was added between the network stack and the applications. The overlay network protocol

would work with all types of networks because it includes as little mandatory elements as possible.

Fall et. al. identified three fundamental principles of the DTN architecture: Firstly, query/response

or conversational form of communication was unsuitable for DTN due to large delay. Hence, all the

metadata required to satisfy a request would be bundled together into a single message. Secondly,

DTN architecture relies on tiered functionality of the underlying protocols and thirdly, DTN

protocols transmit as little information as possible because bandwidth may not be cheap.

6

A few of the existing DTNs are mentioned below. One of the most popular DTNs is the

Interplanetary Internet [2] where communication between the source and destination (planets,

namely Earth and Mars) is carried out by the intermediate nodes (namely orbiting satellites) which

come into contact with each other intermittently. Another example of a DTN is an experimental

DTN project called DakNet [10] which facilitates asynchronous digital communication in remote

villages of central India and Cambodia. The facility is provided by buses/motorbikes or even

bicycles which are mounted with mobile access points (MAP). The kiosks in the villages and the

MAPs on the vehicles exchange information when they come into contact with each other. Such an

exchange of information occurs each time the vehicles come into contact with the kiosks in the

other villages or towns. Thus, the asynchronous communication is achieved between the source and

destination (villages or towns) through the intermediate nodes (vehicles). Another potentially

commercial application is the project FleetNet [3] deployed in Europe. FleetNet aims at developing

a communication platform for inter-vehicle communications. Such a platform could offer multiple

ranges of services. It could offer emergency notification such as informing the driver about the

accident on his/her route. It could dissipate necessary information such as the traffic jam status on

his current route. It could also offer other communication/information service such as inter-car chat

or advertise fuel prices of the next service station. Another compelling application of the DTN is the

ZebraNet [7] project in central Kenya. ZebraNet tries to answer a biological research problem about

long-range migration, inter-species interactions and nocturnal behaviour of the Zebra. The node in

this DTN is the tracking collar carried by the Zebra which contains a GPS, Flash memory, wireless

transceivers and a small CPU. The logged data is then percolated towards a base station

(destination) through the interconnected nodes (tracking collars in each Zebra).

Vehdat et. al. [12] proposed a simple routing protocol for DTN called Epidemic protocol. In this

approach, the message is transferred by a node to any intermediate node that comes into contact

with it, provided the intermediate node does not have the message already. Thus, it tries to increase

the data delivery probability. But, this protocol creates too many replicas of the same message in the

network, resulting in increase of network congestion. Another variant of epidemic is the Spray and

Wait protocol proposed by Spyropoulos et. al. [11]. In this approach, the source node will spray a

7

limited number of copies of the message into the network and waits for one of these nodes to meet

the destination.

However, there are some routing protocols which transmit the message only to a selected subset of

nodes from the set of all nodes that come into contact. Sushant Jain et. al. [5] proposed another

approach with a low delivery probability and less network congestion. In the First Contact

approach, the message is transferred to only the first node that comes into contact.

Lindgren et. al. [9] proposed the Probabilistic ROuting Protocol using History of Encounters and

Transitivity (PROPHET) routing protocol. It uses repeating behavioral patterns in the contact

history between the nodes. Each node maintains a delivery predictability to every other node. A

delivery predictability to a node i indicates the probability with which the current node would

deliver the message to node i. When two nodes meet, they exchange their predictability to update

their own delivery predictability and all the other transitive predictability to other nodes. A message

will only be passed to another intermediate node only if the latter has higher delivery predictability

to the destination node. This method replicates message in a limited manner, unlike Epidemic

routing.

It has been observed that patterns emerge from the movement of mobile nodes in many real life

scenarios. Considering human beings as the mobile nodes, Gonzalez et. al. [4] have proved that the

human beings follow simple reproducible patterns in their movement. Also, a spatial probability

distribution was specified for such patterns in movement. Kim et. al. [8] have explored the mobility

characteristics in traces of mobile users and discovered that speed and pause time of the mobile

users, follow a log normal distribution. They also observed that the direction of the movement was

affected by the direction of roads and walkways. Focusing on the movement of people in popular

areas, they have also developed a mobility model which gives movement traces that resemble the

real user traces.

8

3. Similarity Measures

A challenging question on the basis of which many delay tolerant network (DTN) routing protocols

function is to determine who (amongst all nodes in contact) should be chosen to pass on the

message. A few such strategic DTN routing protocols are PROPHET [9], PROCS [6] and others.

However, these protocols have assumed the existence of many knowledge oracles [5], each of

which is capable of answering the questions posed to them. The knowledge oracle that knows the

information necessary to answer the above question is referred to as contact oracle. Contact oracles

can answer any question regarding contacts between any two nodes at any specific instant of time.

Contact oracle has the information about when two nodes are going to meet each other in the future.

One of the challenges lying ahead is to eliminate the assumption of the existence of such a

hypothetical contact oracle and, to design and implement a system which has equivalent answering

powers. Given the contact history between a set of nodes for a given period of time, it should be

possible for the proposed system to predict when two specific nodes are going to meet each other.

In order to perform this task, it becomes necessary to recognize the repeating behavioural patterns

existent in the contact history and slice the given contact history into a set of periodically repeating

sequences referred to as contact patterns. The points where contact history is sliced to obtain the

contact patterns are called slice points. The recognition of patterns in an exhaustive contact history

and subsequent identification of slice points is a challenge in itself. The identification of slice points

would become easier if a metric existed which could measure the similarity between any two slices

of the contact history. Thus, the first step is to come up with such a similarity measure.

3.1 Formal Specification of Slice Structure

The contact history is a 3-tuple list <src, des, t> indicating a mobile node src meets another mobile

node des at time t. Two slices X and Y that are generated from the contact history and are to be

compared can be represented in the following form –

9

X Y
src des time frequency src des time frequency
A B X1 F1 A B Y1 G1

B C X2 F2 B C Y2 G2
.
.
F H Xm Fγ G H Yn Gß

where,{A, B, C…} is the set of mobile nodes that are involved. Time tmin ≤ Xi ≤ tmax and tmin ≤ Yi ≤

tmax are the times at which the corresponding nodes meet each other in slice X and Y respectively.

tmin and tmax are the minimum and maximum time of both the slices. Frequency Fi or Gi are the

number of times the corresponding node pairs <src, des> occur in the slice X or Y respectively. m

and n are the number of contacts in slice X and Y respectively. γ and ß are the number of unique

node pairs in contact in slice X and Y respectively.

3.2 Formulation of Similarity Measures

Given two slices from a contact history, the similarity measure η Є [0, 1] is a metric that is used to

describe how closely the slices match with each other. The closeness must encompass vital

characteristics such as the difference in time(s) at which specific node pairs meet and the frequency

with which specific node pairs meet. The similarity measure may also give insight on the causality

in the contact among node pairs implicitly or explicitly.

The similarity measure η must satisfy the following properties –

1. For any slice X, η(X,X) = 1 and η(X,) = 0

2. Commutative property: For any two slice X,Y, η(X,Y) = η(Y,X)

3. Learning (Preservation of similarity) property: A non-zero η for any two slices X and

Y can never be brought back to zero by any number of insertions and deletions of

contacts in any of the slices, unless all contacts with equal node pair in both slices

are deleted.

10

We propose two such similarity measures namely Euclidean distance based similarity measure and

set similarity measure. Then, we evaluated the suitability of these two similarity measures under

different scenarios.

3.2.1 Euclidean Distance Based Similarity Measure (η1)

The Euclidean distance based similarity measure takes two factors into account. Firstly, it considers

the frequency with which the contact between the same pair of nodes is occurring. Secondly, how

close are the contacts between corresponding node pairs in both the slices occurring temporally?

The frequency factor of contacts between the same pair of nodes is measured using set similarity

and is controlled by the weight q. The temporal closeness factor of the contacts between

corresponding node pairs occurring in both the slices is measured using Euclidean distance between

the times of contact occurrence in the corresponding node pairs and is controlled by the factor p.

The Euclidean distance based similarity measure is formulated as follows –

2

1 2
max min

()min(,) min(,)
,, , * * 1 *
*()min(,) min(,)

, ,

i ji j i j

i j i j

n
X YF G F G

i ji j i jp q
n t tF G F G F G F G

i j i j

η

−

=

⎛ ⎞
⎜ ⎟∑∑ ∑
⎜ ⎟
⎜ ⎟− +
⎜ ⎟−+ − + −∑ ∑ ∑ ∑ ∑ ∑⎜ ⎟
⎜ ⎟
⎝ ⎠

…(3.1)

where, n is the number of node pairs that occur in both the slices X and Y. (Xi-Yj) is the time

difference in the contact of the corresponding node pair such that the corresponding node pair occur

in both the slices X and Y.

3.2.2 Set Similarity Measure (η2)

The similarity measure η2 is calculated on a 3-tuple equality basis <src, des, time> unlike in η1,

where frequency is calculated over equality of 2-tuples <src, des>. Hence, frequency tuple becomes

redundant in the calculation of η2. The similarity measure η2 imposes a restriction upon the node

11

pairs occurring in both the slices to meet each other at the same time to show an improvement in

similarity. On the other hand, η1 allows room for temporal variations in the contact of same node

pairs in both slices. Considering slice X and Y as multi-sets, the set similarity measure is formulated

as follows -

2 | | | |
X Y

X Y X Y
η =

+ −
∩

∩ ………(3.2)

3.2.3 Evaluation of Similarity Measures

The slices were generated in the following manner: The number of meetings, the number of unique

node pairs and the maximum time were taken as input for the slice generator. The slice generator

was also parameterized on the number of unique node pairs to which we are biased and the degree

of bias to each unique node pair. Once a slice X was generated by the fore-mentioned slice

generator, the slice Y can be generated by manipulating slice X, treating X as a seed. Each contact in

slice X can be manipulated by the following operations: retain contact (the contact in slice X is

placed into slice Y without any change), dissimilar contact (The contact in slice X is placed into

slice Y by retaining the same node pair and inducing a temporal dissimilarity/variation) and drop

contact (The contact in slice X is not placed into slice Y). After the completion of slice X

manipulation by parameterized percentages of each of the three operations, a parameterized

percentage of new contacts are added into slice Y. The new contacts are generated randomly and

may or may not be present in slice X. The experiments were performed for 50 contacts. The number

of nodes involved was 10, resulting in a total of 45 possible unique node pairs. Amongst these 45

possible unique node pairs possible, only 10 were chosen randomly. The time for which the slices

were generated, fell in the range [0, 23]. However, no bias has yet been imposed on any of the

unique node pairs in a slice.

12

3.3 Results & Inferences

3.3.1 Observation of rising and falling rate of similarity measures

In this experiment, the slice X was generated and slice Y was kept empty initially. After the addition

of each contact into slice Y by retaining contacts from slice X, the similarity measures were

calculated to observe the rising rate. When the slice X became exactly same as that of slice Y, an

equal number of new contacts were added into Y to observe the falling rate. The graph obtained is

shown in Figure 3.1. From the results, we infer that both η1 and η2 increase uniformly to the

addition of same contacts into slice Y and decrease non-uniformly to the addition of new contacts. It

must be noted that η1 and η2 would never come back to 0, no matter how many contacts are added.

Thus, the similarity measure has the property of learning (preserving) the similarity once achieved

in a chronological time frame.

Same followed by new contacts

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Number of contacts added

η1
 o

r η
2

η1 or η2

Figure 3.1: Same contacts followed by new contacts

3.3.2 Observation of effect of temporal variations on similarity measures

In this experiment, the slice X was generated and slice Y was kept empty initially. After the addition

of each contact into slice Y by retaining node pairs and inducing temporal dissimilarity of varying

degrees (say 0, 4, 8 and so on) from slice X, the similarity measures were calculated to observe the

13

rising rate. The results are shown in Figure 3.2 (a) and 3.2 (b) respectively. From the results, we

infer that η1 employs a continuous nature [0, 1] in determining the similarity of each contact added.

It is tolerant to slight variations in time at which the nodes meet each other in the two slices. As per

η1, contacts are said to be varying between totally equal and totally unequal. On the other hand, η2

employs a discrete nature [0/1] in determining the similarity of each contact added. It is absolutely

intolerant to even slight temporal variations. As per η2, contacts are said to be either equal or

unequal, nothing in between. Two contacts are said to be equal only if they involve the same node

pair and meet at the same time, unequal otherwise.

Adding dissimilar contacts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of contacts added

η1

vary by 0
vary by 4
vary by 8

Adding dissimilar contacts (η2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of contacts added

η2

vary by 0
vary by 4
vary by 8
vary by 12

 Fig 3.2 (a) Fig 3.2(b)

Fig 3.2: Adding dissimilar contacts (a) Effect on η1 (b) Effect on η2

14

3.3.3 Observation of falling rate of similarity measures

In this experiment, the slice X was generated and slice Y was kept same as slice X initially. After the

addition of each contact into slice Y by any operation (same, new or temporal variance), the

similarity measures were calculated to observe the falling rate. The results are shown in Figure 3.3.

From the results, it must be noted that though η1 and η2 are not falling uniformly; however, they do

follow a pattern. For every ith contact that is added into an initially equal slice Y with cardinality

|Y|, the similarity measure falls to |Y|
i + |Y|

. From the results, we infer that both η1 and η2 decrease

harmonically when any contact is added to any one of already equal slices.

Add new contact to equal slices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250
Number of contacts added

η1
 o

r η
2

η1 or η2

Figure 3.3: Addition of new contacts to equal slices

4. Slicing the Pattern

4.1 Formal Specification of the Slicing Problem

Slicing a contact history is the process of transforming a non-partitioned contact history into

meaningful partitions (slices) such that majority of the contacts repeat across the partitions. Since a

contact history can be partitioned at any time duration between 0 to
2
t , it becomes necessary to

15

define a slice measure which would determine which time duration yielded the best slicing.

Consider a pattern P that is sliced into n slices. We compare each pair of the n slices using the

similarity measure η1. A threshold based slice measure is defined as follows –

2

() xD n C
Φ = ……………………………….…… (4.1)

ALGORITHM: Constant Time Duration Slicing
Input: A contact history of the form <src, des, time> which is time sorted.
Output: A single splice point (period after which most/all contacts repeat)

slice_point_found_flag = FALSE
For DURATION = 1 to (t+1)

Slice the contact history for every DURATION units.
For each slice

For each contact entry
time ← time % (DURATION + 1).

 End for
End for

 For each slice i
 For every slice j
 comparison_matrix[i, j] ← η1 (slice i,slice j)
 End for
End for
X ← Number of entries in comparison_matrix above pre‐specified threshold ß

slice_measure[DURATION] =

2

(1)
x

t
DURATION C

+⎡ ⎤
⎢ ⎥⎢ ⎥

if (slice_measure[DURATION] = 1)
slice_point = DURATION
slice_point_found_flag = TRUE
break

 End if
End for
if (slice_point_found_flag = FALSE)

slice_point = smallest DURATION i with largest slice_measure value above α
End if

Figure 4.1 Constant Time Duration Slicing Algorithm

16

where, n is the number of slices for duration D, x is the number of similarity measure values out of
nC2 values that are above a pre-specified threshold ß. Suppose 80 out of 100 similarity measure

values are above the pre-specified threshold ß for a duration D, then (D) = 0.8 . The slice point

must satisfy two conditions: Firstly, (D) for a slice point D must be greater than α, where α is the

pre-specified threshold percent of similarity measure values which must be above the pre-specified

threshold ß. Secondly, if (D1) and (D2) are same for points D1 and D2, choose the minimum

of D1 and D2. The slicing problem can be formally defined as follows:– Given a 3-tuple pre-

processed contact history of the form <src, des, time> from time 0 to time t, the aim of the slicing

problem is to find the smallest duration SP (slice point) 1 ≤ SP ≤ t+1 using which the equal slicing

of the contact history based on time results in a maximum slice measure (SP) such that (i) <

(SP) for 1 ≤ i ≤ t+1 and i ≠ SP. Let α be the pre-specified threshold percent of similarity measure

values which must be above the pre-specified threshold ß. A brute force based slicing strategy is

shown in Fig. 4.1.

4.1 Experimental Setup

In order to evaluate the feasibility and correctness of the proposed algorithm, we are performing

some experiments with the following setup: Using a pattern that is generated by the procedure

mentioned in section 3.2.3 as a base, we generated a perfectly repetitive contact history by merely

repeating the same base pattern for a fixed number of cycles. The proposed algorithm has been

successful in identifying such a pattern as repetitive and has also successfully identified the slice

point. In order to test the proposed algorithm on contact history which is not perfectly repetitive, we

are using the following method: Rather than just repeating the base pattern exactly as it is, we

modify the base pattern for each cycle by different operations resulting in three scenarios. The

nodes which are already present in a slice are referred to as regularly meeting nodes. In the first

scenario, we add a fixed percentage of node pairs that do not exist in the slice. This simulates the

scene where nodes other than the regularly meeting nodes also meet in a specific slice. In the

second scenario, we add a fixed percentage of same node pairs meeting at times other than those

present in the slice. This simulates the scene where the regularly meeting nodes also meet other

17

nodes or they meet the same node again at a different time in addition to their existing meeting. In

the third scenario, we only change the times at which the regularly meeting nodes are coming in

contact with each other. This simulates the scene where the regularly meeting nodes meet at a time

other than their usual time. Further, it is also possible that all these changes may not happen in all

slices. To inculcate this, the fore-mentioned changes are made only on a fixed percentage of slices.

We are currently in the process of determining appropriate values for parameters such as α and ß

and are also testing the proposed algorithm on such non-perfectly repetitive contact history.

5. Conclusion

Euclidean distance based similarity measure gains an upper hand over set similarity measure

because it is highly tolerant towards slight temporal variation by which the mobile nodes meet each

other. However, both the metrics perform equally well in terms of robustness. Both metrics exhibit

the property of preserving the similarity that once occurred for eternity. A simple brute force based

splicing technique is proposed. Experimentation for testing the correctness and feasibility of the

algorithm is in progress.

6. Future Work

• Efficient slicing strategies need to be developed. Given a contact history, several methods

could exist to slice the given contact history. However, some of these methods have a

significant benefit over the others in terms of time complexity and space, which are both

critical to the DTN.

• Once slices have been generated, prediction about when specific pairs of nodes would meet

each other in the future must be performed.

• Also, the current approach works in a centralized manner, in the sense that each node is

assumed to know the contact history of every other node. Hence, a distributed approach

would be a much more practical solution for DTNs.

18

References

[1] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and H. Weiss,
“Delay-tolerant networking: an approach to interplanetary internet," Communications
Magazine, IEEE, vol. 41, no. 6, pp. 128-136, June 2003.

[2] K. Fall, “A delay-tolerant network architecture for challenged internets," in SIGCOMM '03:
Proceedings of the 2003 conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, New York, NY, USA: ACM, pp. 27-34,2003.

[3] W. Franz, R. Eberhardt, T. Luckenbach, “FleetNet - Internet on the Road”, Conference
Proceedings ITS 2001, 8th World Congress on Intelligent Transportation Systems, Sydney,
Australia, Oct. 2001.

[4] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabási, “Understanding individual human
mobility patterns," Nature, vol. 453, no. 7196, pp. 779-782, June 2008.

[5] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network," in SIGCOMM'04:
Proceedings of the 2004 conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, New York, NY, USA: ACM, pp.145-158, 2004.

[6] R. Jathar, “Probabilistic Routing Protocol using Contact Sequencing In Delay Tolerant
Networks”, M.Tech thesis, Dept. of Computer Science & Engineering, Indian Institute of
Technology – Kharagpur, May 2009.

[7] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein, “Energy-efficient
computing for wildlife tracking: Design tradeoffs and early experiences with Zebranet,”
SIGOPS Oper. Syst. Rev., 36(5):96-107, 2002.

[8] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real user traces," in
INFOCOM 2006. 25th IEEE International Conference on Computer Communications
Proceedings, pp.1-13, 2006.

[9] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently connected
networks," SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, no. 3, pp. 19-20, 2003.

[10] A. S. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connectivity in developing
nations," Computer, vol. 37, no. 1, pp. 78-83, 2004.

19

[11] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient routing
scheme for intermittently connected mobile networks," in WDTN '05: Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant networking, New York, NY,USA: ACM, pp.
252-259, 2005.

[12] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,"
Technical Report, Duke University, April 2000.

